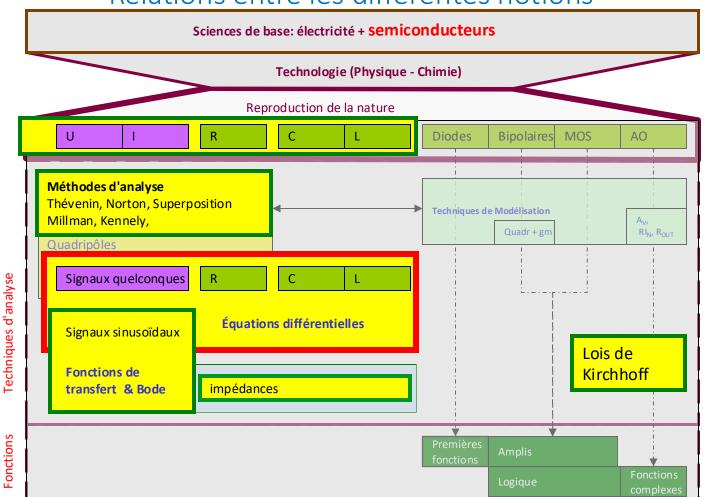
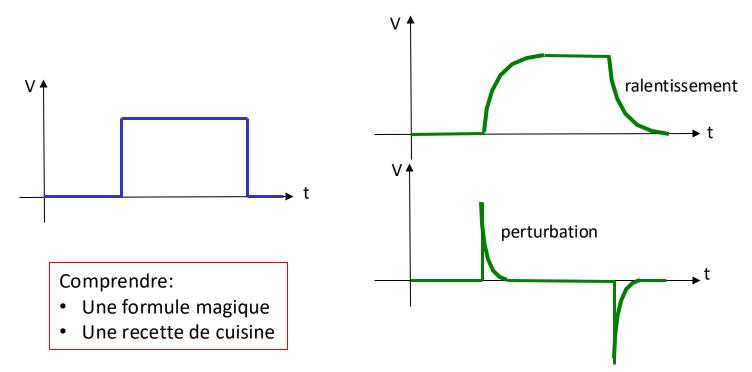
Relations entre les différentes notions



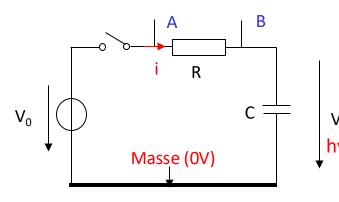
Sauts indiciels (signaux carrés)

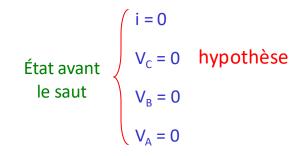
Les combinaisons R et C forment des filtres (volontaires ou involontaires) Leur analyse temporelle pour les sauts indiciels :

- Explique les limites en fréquence des circuits numériques
- Couplage parasite produisant des perturbations

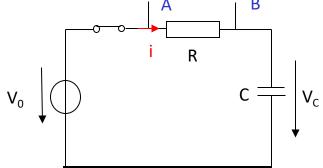


Observations



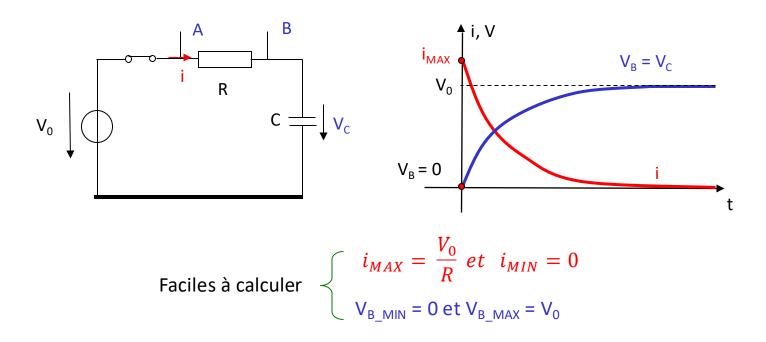


Situation après l'événement



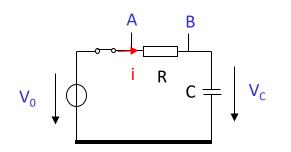
	$t_0 = 0$	$t_1 > t_0$	$t_2 >> t_0$	
V_{c}	0	I	$V_C = V_A = V_0$	
V_{B}	0	7	$V_B = V_A = V_0$	$V_C = V_B$
V_A	V _o	=	=	
i	$\frac{(V_A - V_B)}{R}$	_	0	

Analyse graphique



Comment déterminer les allures des courbes?

Analyse mathématique: Expression



$$i = \frac{V_0 - V_C}{R} = C \frac{dV_C}{dt}$$

$$V_0 = RC \frac{dV_C}{dt} + V_C$$

- Discours mathématique: Équations sans et avec second membre
- Discours physique: Calcul du transitoire et du permanent

TRANSITOIRE:

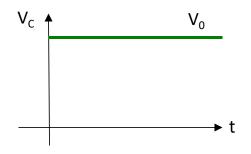
Ne dépend pas de l'excitation Comportement pour revenir à l'état d'équilibre

Équation sans second membre : $0 = RC \frac{dV_C}{dt} + V_C$

PERMANENT:

Dépend de l'excitation. V_C a l'allure de V₀

$$V_0 = cte \Rightarrow V_C = cte \Rightarrow \frac{dV_C}{dt} = 0 \Rightarrow V_C = V_0$$



Analyse mathématique: Développement

$$RC\frac{dV_C}{dt} + V_C = 0 \Rightarrow RC\frac{dV_C}{dt} = -V_C \Rightarrow \frac{dV_C}{V_C} = -\frac{dt}{RC} \Rightarrow \int \frac{dV_C}{V_C} = \int -\frac{dt}{RC} = -\frac{1}{RC}\int dt$$

$$Log(V_C) = -\frac{t}{RC} + K_1$$

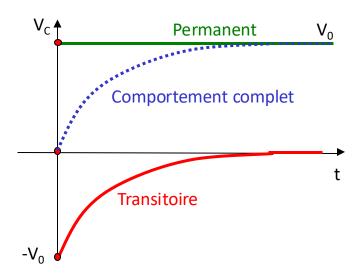
$$V_C = e^{-\frac{t}{RC} + K_1} = e^{-\frac{t}{RC}} \cdot e^{K_1} = K_2 e^{-\frac{t}{RC}}$$

Comportement complet = Transitoire + Permanent

$$V_C = V_0 + K_2 e^{-\frac{t}{RC}}$$
 et K_2 ???

Analyse mathématique: Cas particulier

Cas particulier: $V_C(0) = 0 \Rightarrow 0 = V_0 + K_2$. $e^0 \Rightarrow -V_0 = K_2$

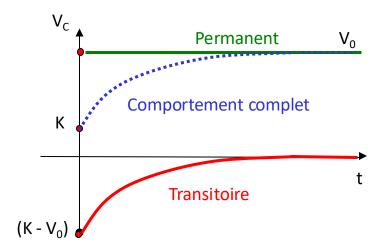


$$V_C = V_0. \left(1 - e^{-\frac{t}{RC}}\right)$$

Analyse mathématique: Condition initiale différente

$$V_C = V_0 + K_2 e^{-\frac{t}{RC}}$$

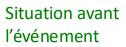
$$V_C(0) = K(charge\ initiale) \Rightarrow K = V_0 + K_2.e^0 \Rightarrow K - V_0 = K_2$$

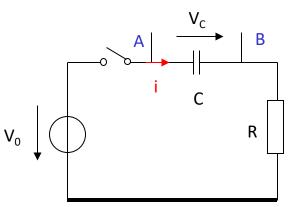


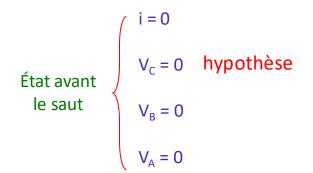
$$V_C = V_0 + (K - V_0).e^{-\frac{t}{RC}} = K + (V_0 - K).(1 - e^{-\frac{t}{RC}})$$

Observations

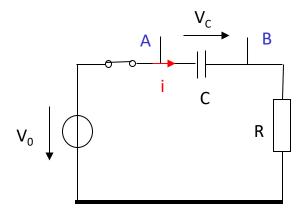
 $V_R = 0$







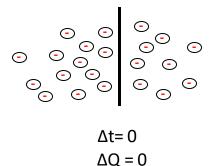
Situation après l'événement



	$t_0 = 0$	$t_1 > t_0$	$t_2 >> t_0$
V _C	V _C [?] 0	$Q = C.V_C$	
V _B	$V_B \stackrel{?}{=} V_0$		
V _A	V ₀		
i	?		

Comportement de la capacité

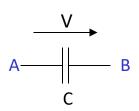
Vision physique



$$\operatorname{Si} \Delta t = 0 \Rightarrow \Delta Q = 0$$

or, pour une capacité $\Delta Q = C\Delta V = 0 \Rightarrow \Delta V = 0$

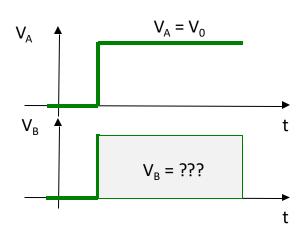
$$V = V_A - V_B$$
 or $\Delta V = \Delta V_A - \Delta V_B = 0 \Rightarrow \Delta V_A = \Delta V_B$



Autre vision

$$\underline{Z}_C = \frac{1}{i\omega C}$$

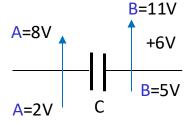
Si ω = 0, C assimilable à un circuit ouvert Si ω = infini, C assimilable à un court circuit

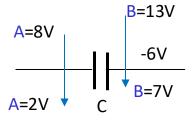


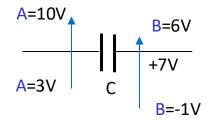
Conséquences: quelques exemples de sauts

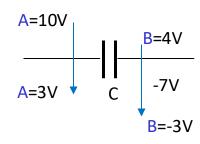
Avec un saut qui s'effectue en un temps nul on peut appliquer le théorème de superposition

- L'état qui précédait le saut (assimilable à la contribution d'une source continue)
- L'effet du saut (assimilable à la contribution d'une source variable)

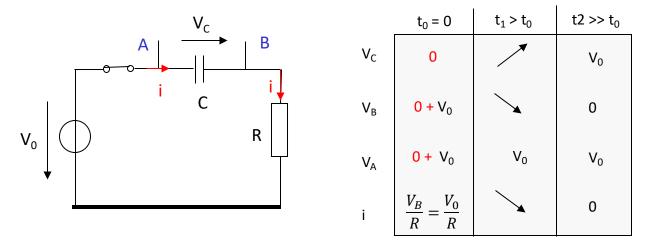








Analyse complète



Avec les équations différentielles

$$i = \frac{V_B}{R} = C \frac{dV_C}{dt} = C \frac{d(V_A - V_B)}{dt}$$
 avec $V_A = V_0 = cte \Rightarrow \frac{d(V_B)}{V_B} = -\frac{dt}{RC}$

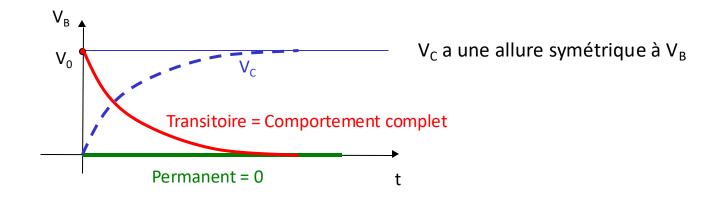
On a directement l'équation sans second membre donc Le permanent = 0 et le transitoire est décrit par l'équation

$$V_B = K_2 \cdot e^{-\frac{t}{RC}} \quad K_2?????$$

Analyse mathématique: Cas particulier

Cas particulier:
$$V_B(0) = V_0 \Rightarrow V_0 = K_2$$
. $e^0 \Rightarrow V_0 = K_2$

$$V_B = V_0 \cdot e^{-\frac{t}{RC}}$$



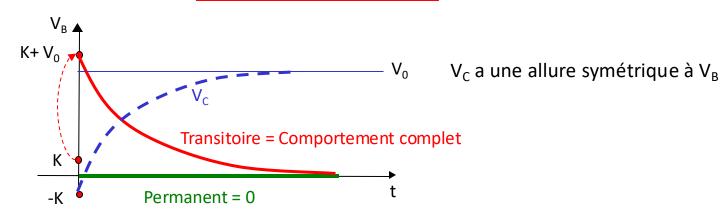
Analyse mathématique: Condition initiale différente

L'équation différentielle ne change pas
$$i = \frac{V_B}{R} = C.\frac{dV_C}{dt} = C.\frac{d(V_A - V_B)}{dt}$$
 et $-dV_B = \frac{1}{RC}.V_B.$ dt

Juste après le saut on aura $V_B(0) = K(charge\ initiale) + V_0$, $K + V_0 = K_2$. $e^0 \Rightarrow K_2 = K + V_0$

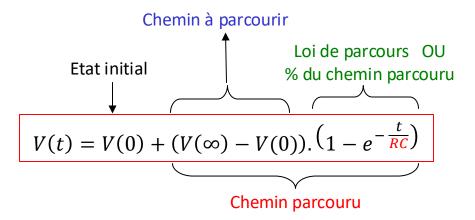
$$K + V_0 = K_2$$
. $e^0 \Rightarrow K_2 = K + V_0$

$$V_B(t) = (V_0 + K).e^{-\frac{t}{RC}}$$



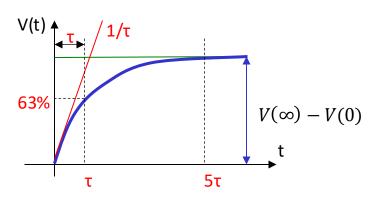
Cas Général

Passe-Bas ou passe-Haut

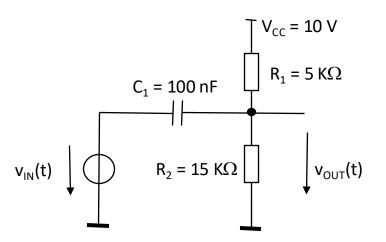


Remarques:

- RC = τ
- Propriétés de T:
 - $V(\tau) = 63\%$ de la charge
 - $V(5\tau) > 99\%$ de la charge
 - $V(7\tau) > 99.9\%$ de la charge

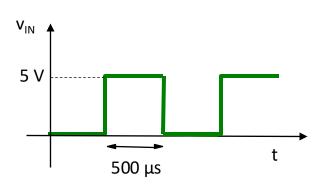


Application



Exercice 1 : Soit $v_{IN}(t) = A \sin(2\pi f t)$, avec A = 5 V et f = 1 KHz Quelle est l'allure du signal $v_{OUT}(t)$?

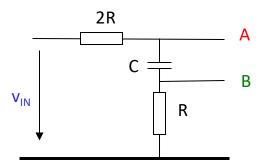
Exercice 2 : Soit $v_{IN}(t)$, le signal carré proposé ci-contre Quelle est l'allure du signal $v_{OUT}(t)$? ?



Recette de cuisine pour un signal carré

Exemple de montage analysé avec le saut indiciel

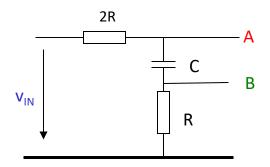
$$\tau = (R + 2R)$$
. $C = 3RC$

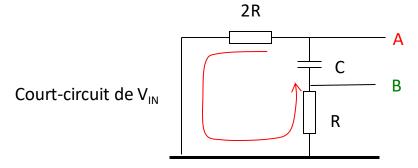


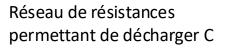
Allures obtenues justifiées page suivante $V_{cc} - \frac{V_{cc}}{3} = 2 \frac{V_{cc}}{3}$ $\frac{V_{cc}}{3}$ $\frac{V_{cc}}{3}$ $\frac{V_{cc}}{3}$ $\frac{V_{cc}}{3}$ $\frac{V_{cc}}{3}$

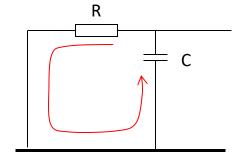
Calcul de τ

Exemple de montage analysé avec le saut indiciel









Ressemble au passe-bas vu en début de cours

Analyse pour quatre temps significatifs

	Situation	Analyse	Schéma équivalent	V _A	V_{B}
	Avant t ₁			0	0
_	à t ₁	On applique la superposition d'un signal AC (dû au saut) et d'un signal DC qui correspond aux tensions à l'équilibre établies avant le saut (<i>0 dans ce cas</i>) AC correspond à un saut +V _{CC} La capacité pour le saut se comporte comme un court-circuit	Saut +V _{cc} R	Avant Saut 0 + $V_{CC} \frac{R}{R+2R} = \frac{V_{CC}}{3}$	Avant Saut 0
_	à t ₂	La capacité est un circuit ouvert et le circuit est à l'équilibre. Les rapports résistifs donnent les tensions aux différents points	Entrée stable +V _{CC} Schéma DC	Avant Saut V	Avant Saut 0
	à t₃	On applique la superposition d'un signal AC (dû au saut) et d'un signal DC qui correspond aux tensions à l'équilibre établies avant le saut (<i>tensions obtenues en t2</i>) AC correspond à un saut -V _{CC} La capacité pour un saut se comporte comme un court-circuit	Saut -V _{CC} R	Avant Saut $\bigvee_{P \mid CC}$ + Effet Saut $-V_{CC} \frac{R}{R+2R} = \frac{-V_{CC}}{3}$	Avant Saut 0 $+$ $\text{Effet Saut } -V_{CC} \frac{R}{R+2R} = \frac{-V_{CC}}{3}$
	à t₄	La capacité est un circuit ouvert et le circuit est à l'équilibre. Les rapports résistifs donnent les tensions aux différents points	Entrée stable 0 Schéma DC	Avant Saut 0	Avant Saut ()